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HTK Contributors
I HTK V3.4.1 book has authors:

Steve Young, Gunnar Evermann, Mark Gales,
Thomas Hain, Dan Kershaw, Xunying (Andrew) Liu,
Gareth Moore, Julian Odell, Dave Ollason,
Dan Povey, Valtcho Valtchev, Phil Woodland

I Major additions in HTK 3.5 will be primarily due to
I Chao Zhang (HTK-ANN extension) †
I Xunying Liu (Language model interface / RNNLM decoding).

I Additional V3.5 input from Anton Ragni, Kate Knill, Mark Gales,
Jeff Chen and many others at Cambridge.

† See also: C. Zhang & P.C. Woodland “A General Artificial Neural Network
Extension for HTK”,To appear, Interspeech 2015
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HTK Overview
I What is HTK?

I Hidden Markov Model Toolkit
I set of tools for training and evaluating HMMs:

primarily speech recognition but also speech synthesis (HTS)
I implementation in ANSI C
I approx 400 page manual tutorial and system build examples
I modular structure simplifies extensions

I History (1989-)
I Initially developed at Cambridge University (up to V1.5)
I ... then Entropic ... (up to V2.2)
I Since 2000 back at Cambridge (V3 onwards)
I Free to download from web, more than 100,000 registered users
I Latest released version is V3.4.1 (in 2009 ...)

I Used extensively for research (& teaching) at CU
I Built large vocabulary systems for NIST evaluations using HTK

http://htk.eng.cam.ac.uk/
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Statistical ASR System
I Statistical speech models using

context-dependent hidden
Markov Models

I Decision tree state tying
I Gaussian mixture models (or

Neural Networks)

I probabilities of word sequences
(N-gram)

I Estimate the models from a
large amount of data

I Find most probable word
sequence using the models
search (decoding) problem

Standard Approach

• Create statistical models of speech!

• acoustic variations of individual sounds 
(hidden Markov Models: generator 
models)!

• probabilities of word sequences (N-gram)!

• Estimate the models from a large 
amount of data!

• Find most probable word sequence 
using the models!

• search (decoding) problem

6

Woodland: Speech Translation

Source-Channel Models

Both ASR and SMT can be formulated using a Source-Channel model.

Transcription
Input - an utterance A
Output - a transcription cW

cW = argmaxW P (W |A)

= argmaxW
P (A|W ) P (W )

P (A)

= argmaxW P (A|W )| {z }
Acoustic
Model

P (W )| {z }
Source

Language Model

Translation
Input - a foreign sentence F
Output - an English sentence bE

bE = argmaxE P (E|F )

= argmaxE
P (F |E) P (E)

P (F )

= argmaxE P (F |E)| {z }
Translation

Model

P (E)| {z }
Source

Language Model

Both rely on searching for Maximum A Posteriori probability strings using models
estimated from data.

Cambridge University
Engineering Department

Engineering Connections: Machines that make sense 2
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Training/Test Architecture
I HTK includes components for all stages of the speech

recognition process

Standard Architecture
• Typical architecture for training / testAutomatic Speech Recognition
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HTK Features
I LPC, mel filterbank, MFCC and PLP frontends

I cepstral mean/variance normalisation + vocal tract length norm.

I supports discrete and (semi-)continuous HMMs
I diagonal and full covariance models
I cross-word triphones & decision tree state clustering
I (embedded) Baum-Welch training

I Viterbi recognition and forced-alignment
I support for N-grams and finite state grammars
I Includes N-gram generation tools for large datasets
I N-best and lattice generation/manipulation

I (C)MLLR speaker/channel adaptation & adaptive training (SAT)

I From V3.4
I Large vocabulary decoder HDecode: separate license
I Discriminative training tools, MMI and MPE HMMIRest

Cambridge University
Engineering Department UK Speech Meeting, UEA, 3rd July 2015 6 / 31
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HTK Architecture

I HTK is structured as
I a set of libraries
I a set of tools

I Tools have uniform
interface

HTK
A Toolkit for ASR Research

Gunnar Evermann, Phil Woodland & Steve Young

Cambridge University Engineering Department
{ge204,pcw,sjy}@eng.cam.ac.uk http://htk.eng.cam.ac.uk/

WHAT IS HTK?

Hidden Markov Model Toolkit
set of tools for training and evaluating HMMs
primarily used for automatic speech recognition
implementation in ANSI C (Unix & Windows)
includes 300 page manual and tutorial
modular structure simplifies extension

Speech
Data Definitions

HMM

Terminal

Graphical

AdaptationModel
Training

HNet

Language
Models

Constraint
Network

Lattices/

Dictionary

HModel

HDict

HUtil

HShell

HGraf

HRecHAdaptHMath

HMem

HSigP

HVQ
HParm
HWave
HAudio

HTrain HFB

HTK Tool

I/O

I/O

HLM

Labels

HLabel

APPLICATIONS OF HTK

build small HMM systems for teaching/tutorials
ideal for practials and lab exercises about HMMs
small/medium vocab speech recognition
training and development for LVCSR
speaker identification

HTK FEATURES

LPC, MFCC and PLP frontends
supports discrete and (semi-)continuous HMMs
context dependent cross-word triphones
decision tree clustering for state tying
(embedded) Baum-Welch training
Viterbi recognition and forced-alignment
support for N-grams and finite state grammars
N-best and lattice generation
cepstral mean/variance normalisation
Vocal Tract Length Normalisation
MLLR speaker/channel adaptation

TYPICAL USAGE

tools used in development/evaluation cycle:

Transcriptions Speech

HLED
HLSTATS

HSLAB
HCOPY
HLIST
HQUANT

HCOMPV, HINIT, HREST
HEREST, HSMOOTH, HHED

HMMs

Networks

Dictionary

HDMAN

HBUILD
HPARSE

HVITE

Transcriptions

HRESULTS

Train

Test

Analyse

EXAMPLE

HMMs described in text files (easy to manipulate)
tying is possible at many different levels:

...

hmm

= potential tie points

µ
1 1
Σ

1c

µ
2 2
Σ

2c

µ
Μ Μ

Σ

Μc

...~u

~m
~v

etc

{γ   }s {d  }l

~w ~d

s3s2 sΝ−1~s

{a   }ij

~t

~i

Stream 1 Stream 2 Stream 3

etc

example model definition:
~o <STREAMINFO> 1 39 <VECSIZE> 39

<PLP_D_A_Z_0><DIAGC>
~h "m"
<BEGINHMM>
<NUMSTATES> 5
<STATE> 2 ~s "m_2"
<STATE> 3
<MEAN> 39 ~u "m_mu_1"
<VARIANCE> 39 ~v "var_1"

<STATE> 4 ~s "m_2"

<TRANSP> 5
0.0 1.0 0.0 0.0 0.0
0.0 0.356 0.644 0.0 0.0
0.0 0.0 0.609 0.391 0.0
0.0 0.0 0.0 0.531 0.469
0.0 0.0 0.0 0.0 0.0

<ENDHMM>

~s "m_2"
<NUMMIXES> 2
<MIXTURE> 1 0.37
<MEAN> 39
4.83 -0.632 -0.241 1.31 ...

<VARIANCE> 39
8.48 25.4 22.4 23.8 ...

<MIXTURE> 2 0.63
<MEAN> 39 ...

recognition grammars are specified in EBNF:

sent-start

one

two

three

zero

dial

phone

call

Julian Odell

Dave

... etc

Steve Young

... etc

Ollason

sent-end

$digit = ONE | TWO | THREE | ... | ZERO;
$name = [ JULIAN ] ODELL |

[ DAVE ] OLLASON |
[ STEVE ] YOUNG;

( SENT-START ( DIAL <$digit> |
(PHONE|CALL) $name )

SENT-END )

HISTORY
1989: development started at Cambridge University
Engineering Department
1995: Entropic Cambridge Research Labs established
1999: Microsoft acquired Entropic
2000: HTK3 made freely available from CUED

HOW IS HTK USED AT CUED?
teaching (1 year MPhil course)
research (staff & PhD students)

basis for building state-of-the-art eval systems, e.g.
2001 Hub5 (Switchboard) eval:
– 4 sets of acoustic models:

MLE/MMIE + Tri-/Quinphone
– 4-gram word LM + 3-gram class LM
– trained on 256 hours audio & 200 million words text
– 54k vocab, PLP frontend, VTLN, MLLR
– confidence score & system combination

HTK3
free of charge, includes full source & book
HTK 3.0 available since September 2000
more than 7500 registered users in first year
active mailing lists for users (100 posts/month)

PROJECT AIMS
lower barrier of entering ASR research
make state-of-the-art research system available
allow work on part of problem (e.g. LM)
provide tool for ASR teaching
build a community of ASR researchers/students

NEW FEATURES SINCE 3.0
PLP frontend
Vocal Tract Length Normalisation
cluster-based mean/var normalisation
many bug fixes
fast lattice rescoring/pruning
N-gram LM lattice expansion

ACKNOWLEDGEMENTS
Over the last 10 years many individuals have con-
tributed to the development and success of HTK. We’d
like to thank the staff & students at Entropic and CUED
for all their hard work.
Microsoft generously made the free distribution of HTK
possible.

MORE INFO & DOWNLOAD
http://htk.eng.cam.ac.uk/

I Text-based model formats are used where possible
(with binary versions for efficiency)

I Built to scale to large data-sets
I data-parallel operations for training (HERest/HMMIRest)
I unsegmented data files (e.g. broadcasts)
I multiple lattices/labels in one file

Cambridge University
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Typical HTK MPE HMM Build Process

I Start from maximum
likelihood trained triphone
HMMs

I Generate “numerator”
(correct transcription) and
“denominator” (recogniser
with weak language model)
lattices

I “phone mark” lattices
I Run MPE training with

HMMIRest (extended
Baum-Welch algorithm)

3.10 Discriminative Training 55

3.10 Discriminative Training

A further refinement to the acoustic models is to use a Discriminative Training approach to HMM
parameter estimation. Discriminative training can bring considerable improvements in recognition
accuracy and is increasingly being used in large vocabulary speech recognition systems.

Note that as HDecode is run to create the lattices, a cross-word triphone model
set must be used. The form of dictionary described in the HDecode section is also
required.

Word
Lattices

(wlat.den)

HDecode

HLRescore

(hmm20)

ML Acoustic
Models

HLRescore

Phone marked
Lattices

(plat.den)

EST (x4)HMMIR

(hmm24)

MPE Acoustic
Models

(words.mlf)
Transcriptions

Word

LGPrep/LBuild

HDecode.mod

Phone marked
Lattices

(plat.num)

(trainbg)

Language
Model

(wlat.num.det)

Word
Lattices

Word
Lattices

(wlat.den.det)

HDecode.mod

Fig. 3.16 Discriminative Training

The implementation of discriminative training with HTK requires the following steps sum-
marised in Fig. 3.16. The individual steps and related command-lines are given below.

3.10.1 Step 1 - Generation of Initial Maximum Likelihood Models

A cross-word triphone set of HMMs must be initially trained using standard maximum likelihood
estimation (with HERest). Since HDecode is used in this recipe for both word lattice generation
and phone-marking of the lattices, cross-word triphone models are assumed in this section, as in
the previous section. These models are again stored in the MMF hmm20/MODELS.

3.10.2 Step 2 - Training Data LM Creation

A “weak” language model, i.e. a unigram or bigram, must be created for use in discriminative
training. It is essential that the vocabulary includes (at least) the words in the correct word-level
transcripts. Since a weak language model is required, it is possible to use only the transcripts of
the acoustic training data in LM creation. If a bigram LM is used, typically the count cutoff is set
so that there are approximately the same number of bigrams as unigrams. Details of how this can
be done can be found in the HLM tutorial section 15, but a brief outline is given below.

First of all the data in the training set MLF must be modified into a suitable form for language
model training with sentence start and sentence end symbols. Traditionally in language modelling
<s> and </s> are used for these symbols. However in keeping with the HDecode section above,

Cambridge University
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Deep Neural Network Acoustic Models
I Recently a resurgence in the use of Neural Network models for

acoustic modelling
I Deep Neural Networks (DNNs) are Multi-Layer Perceptrons with

many hidden layers (Sigmoid or ReLU units)
I Standard DNNs

I Model posterior probability of standard HMM context-dependent
phone states (1-of-k encoding, softmax)

I Frame based criterion optimises the cross-entropy criterion
I Stochastic gradient descent (SGD) via error back propagation
I Initialised using generative model (RBM pre-training) or EBP

(discriminative pre-training)
I State-of-the-art DNNs also include sequence training via the

MPE/MMI criteria computed over lattices
I HMM-DNN Hybrid models use the probabilities directly
I Tandem models use the DNN to produce features (possibly

combined with e.g. PLP) and modelled by a GMM as usual.
Cambridge University
Engineering Department UK Speech Meeting, UEA, 3rd July 2015 9 / 31
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Tandem and Hybrid Approaches

I “Tandem (left): Generate features at bottleneck for HMM-GMMs
I “Hybrid (right) : replace GMMs with DNN scaled likelihoods
I Both give large reductions in WER (e.g. 25%) & are

complementary
I Define state-of-the-art: used in all best research systems and

some commercial systems

Tandem & Hybrid Approaches

23

• “Tandem” (left): Generate features at bottleneck for HMM-GMMs!

• “Hybrid” (right) : replace GMMs with DNN probabilities!

• Both give large reductions in WER (e.g. 25%) & are complementary!

• Define state-of-the-art: used in all best research systems and 
starting to be used in commercial systems

Speech Recognition and Keyword Spotting for Low Resource Languages: Babel Project Research at CUED

Use of (Deep) Neural Networks

Targets

C
ontext−D

ependent

TargetsHidden Layers

Input Layer Layer
Bottleneck C

ontext−D
ependent

Bottleneck
 PLP

 Pitch

 Input
 Features

 Input
 Features

Input Layer
Hidden Layers

• Develop both Tandem and Hybrid system configurations

– results are complementary (both for ASR and KWS) - see later
– gains from techniques often apply to both set-ups
– but systems also have different advantages

CUED Lorelei Team
Babel Program

SLTU May 2014 13
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Recurrent Neural Network Language Models
I Predict probability of next

word given current word &
history (in recurrent units)

I SGD by back-propagation
through time

I Continuous space vs
discrete space for N-grams

I Significant reductions in
WER

I Expensive to train
(& expensive to decode
due to multiple histories)

Recurrent NN Language Models

24

achieve non-linearity. This is then passed to the output layer to pro-
duce normalized RNNLM probabilities using a softmax activation,
as well as recursively fed back into the input layer as the “future”
remaining history to compute the LM probability for the following
word PRNN(wi+1|wi, vi−1).

Input layer

...

Output layer

...
...

Hidden layer

OOV input node

sigmoid
...

softmax

OOS output node

wi−1

vi−2

vi−1

vi−1

PRNN(wi|wi−1, vi−2)

Fig. 1. A full output layer RNNLM with OOS nodes.
To reduce computational cost, a shortlist based output layer vo-

cabulary limited to the most frequent words can be used. This was
previously used for feedforward NNLMs [27, 6]. A similar approach
may also be used at the input layer when a large vocabulary is used.
In order to reduce the bias to in-shortlist words during NNLM train-
ing, two alternative network architectures that model a full vocabu-
lary at the output layer can be considered. The first uses a class based
factorized output layer structure [23]. Each word in the output layer
vocabulary is attributed to a unique class.As the number of classes
are normally significantly smaller than the output layer vocabulary
size, training time speed-ups can be achieved for both feedforward
NNLMs [23] and RNNLMs [20]. The second explicitly models the
probability mass of out-of-shortlist (OOS) words using an additional
output node [25, 11]. This ensures that all training data are used in
training, and the probabilities of in-shortlist words are smoothed by
the OOS probability mass to obtain a more robust parameter esti-
mation. The performance sensitivity to word classing in class based
RNNLMs is also removed. This form of full ouput RNNLMs with
OOS nodes is used in the rest of this paper.

RNNLMs can be trained using an extended form of the standard
back propagation algorithm, back propagation through time [26],
where the error is propagated through recurrent connections back
in time for a specific number of time steps. This allows the recur-
rent network to record information for several time steps in the hid-
den layer. Full output RNNLM can be efficiently trained in a bunch
mode on GPUs [4]. A modified version of the RNNLM toolkit [21]
supporting the above full output architecture with an output layer
OOS node and the associated bunch mode GPU training is used.

In state-of-the-art speech recognition systems, NNLMs are often
linearly interpolated with n-gram LMs to obtain both a good cover-
age of contexts and strong generalisation ability [27, 6, 25, 19, 29,
11]. The interpolated LM probability is given by

P (wi|hi−1
1 ) = λPNG(wi|hi−1

1 ) + (1 − λ)PRNN(wi|hi−1
1 ) (1)

λ is the weight assigned to the back-off n-gram LM PNG(·), and kept

fixed as 0.5 in all experiments of this paper. In the above interpola-
tion, the probability mass of OOS words assigned by the RNNLM
component needs to be re-distributed among all OOS words [25, 11].

3. PARAPHRASTIC LANGUAGE MODELS

Paraphrastic Language Models (PLMs) [14, 17] directly target ex-
pressive richness related variability in natural languages. A statisti-
cally trained phrase level generative model is used to produce multi-
ple paraphrase sentences for each training data sentence. Paraphras-
tic LM probabilities are then estimated by maximizing the marginal
probability of these paraphrase variants. For an L word long sen-
tence W =< w1, w2, ..., wi, ..., wL > in the training data, the
marginal probability over all paraphrase sequences is maximized,

F(W) = ln

⎛
⎜⎝

∑

ψ,ψ′
,W′

P (W|ψ)P (ψ|ψ′)P (ψ′|W ′)PPLM(W ′)

⎞
⎟⎠ (2)

where

• PPLM(W ′) is paraphrastic LM probability to be estimated.

• P (ψ′|W ′) is a word to phrase segmentation model assigning
the probability of a phrase level segmentation, ψ′, given a
paraphrase word sequence W ′;

• P (ψ|ψ′) =
∏

v,v′ P (v|v′) uses a phrase to phrase para-
phrase model to compute probability of a phrase sequence
ψ being paraphrastic to another ψ′;

• P (W|ψ) is a phrase to word segmentation model that con-
verts a phrase sequence ψ to a word sequence W , and by
definition is a deterministic, one-to-one mapping, thus con-
sidered non-informative.

3.1 Automatic n-gram paraphrase induction: In order to gener-
ate multiple paraphrase variants {W ′}, the phrase level paraphrase
model {P (v|v′)} in equation (2) needs to be estimated. To obtain
sufficient phrase coverage, a large number of paraphrase phrase pairs
are required. As it is impractical to obtain expert semantic labelling
at the phrase level, a distributional similarity [8] based automatic n-
gram paraphrase induction algorithm proposed in [14, 17] is used.
The co-occurrence counts of two phrases of variable lengths, for ex-
ample, from one word to four words maximum, sharing the same left
and right three word contexts, are used to estimate the phrase level
paraphrase model1. Ambiguity can occur during word to phrase seg-
mentation. If there is no clear reason to favor one phrase segmenta-
tion over another, P (ψ′|W ′) can be treated as non-informative.
3.2 Generation of paraphrase variants: In order to train para-
phrastic LMs, multiple paraphrase variants are required. Weighted
finite state transducers (WFST) [24] can be can used to efficiently
generate paraphrases [14, 17]. For each training data sentence, the
paraphrase word lattice TW′ is generated using a sequence of WFST
composition operations as

TW′ = det
(
πW′

(
TW:W ◦ TW:ψ ◦ Tψ:ψ′ ◦ Tψ′

:W′

))
(3)

where TW:W is the transducer containing the original word se-
quence, TW:ψ is the word to phrase segmentation transducer, Tψ:ψ′

1In common with other paraphrase induction methods [1, 18], this
scheme can also produce phrase pairs that are non-paraphrastic, for exam-
ple, antonyms. However, this is of less concern for language modelling, for
which improving context coverage is the prime aim.

• Use feed-forward & recurrent 
NNs for language models!

• Predict probability of next word 
give current word and history 
(in recurrent units)!

• back-propagation through time

• Continuous space vs discrete space for N-grams!

• Apply in combination with N-grams (via lattices or n-best)!

• Significant reductions in WER esp useful for small training sets

I Apply in combination with N-grams (via lattices preferred but
computational issues)
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Key HTK Attributes

Strong Points in HTK V3.4.1
I Widely used
I Flexible and modular (easy to modify/extend/use)
I Good documentation & examples
I Could build state of the art systems (in 2009 ...)

Issues
I lack of built-in Deep Neural Network support

I for frame-based training use other tools
I can’t extend to “sequence training” (e.g. MMI/MPE)

I n-gram only lattice rescoring (no recurrent neural network LMs)
I only relatively small-scale recipes

HTK V3.5 aims to address issues while retaining strong points!

Cambridge University
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Overview of HTK-ANN Extensions

I Design Principles

I Implementation Details

I Generic ANN Support
I ANN Training
I Data Cache
I Other Features

I Example ANN definition

I New Modules and Tools

I Build Procedure

I A Summary of HTK-ANN

Cambridge University
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Design Principles

I The design should be as generic as possible.

I Flexible input feature configurations.
I Flexible ANN model architectures.
I ... but don’t sacrifice efficiency.

I Maintain compatibility with as many existing functions in HTK as
possible.

I HTK-ANN should be compatible with existing functions.
I To minimise the effort to reuse previous source code and tools.
I To simplify the transfer of many technologies.

I HTK-ANN should be kept “research friendly”.

Cambridge University
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Generic ANN Support

I In HTK-ANN, ANNs have layered structures.
I An HMM set can have any number of ANNs.
I Each ANN can have any number of layers.

I An ANN layer has
I Parameters: weights, biases, activation function parameters
I An input vector: defined by a feature mixture structure

I A feature mixture has any number of feature elements
I A feature element defines a fragment of the input vector by

I Source: acoustic features, augmented features (e.g. ivectors),
output of some layer.

I A context shift set: integers indicated the time difference.

Cambridge University
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Generic ANN Support (cont’d)

I In HTK-ANN, ANN structures can be any directed cyclic graph.
I Since only standard EBP is included at present, HTK-ANN can

train non-recurrent ANNs properly (directed acyclic graph).

t-6
t-3
t

t+3
t+6

t

t-1
t 

t+1

Feature Element 1 Source: Input acoustic features

Context Shift Set: {-6, -3, 0, 3, 6}

Feature Element 2 Source: ANN 1, Layer 3, Outputs

Context Shift Set: {0}

Feature Element 3 Source: ANN 2, Layer 2, Outputs

Context Shift Set: {-1, 0, 1}

Figure: An example of a feature mixture.
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ANN Training

I HTK-ANN supports different training criteria
I Frame-level: Cross Entropy (CE), Minimum Mean Squared Error

(MMSE)
I Sequence-level: Maximum Mutual Information (MMI),

Minimum Phone/Word Error (MPE/MWE)
I ANN model training labels can come from

I Frame-to-label alignment: for CE and MMSE criteria
I Feature files: for autoencoders
I Lattice files: for MMI, MPE, and MWE criteria

I Gradients for SGD can be modified with momentum, gradient
clipping, weight decay, and max norm.

I Supported learning rate schedulers include List, Exponential
Decay, AdaGrad, and a modified NewBob.

Cambridge University
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Data Cache

I HTK-ANN has three types of data shuffling
I Frame based shuffling: CE/MMSE for DNN, (unfolded) RNN
I Utterance based shuffling: MMI, MPE, and MWE training
I Batch of utterance level shuffling: RNN, ASGD

5

4

1

3

1

2

3

1 2 3

1 2 3 4

1 2 3 4 5

1 2 3 4

batch t batch t batch t

Figure: Examples of different types of data shuffling.
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ANN Model Definition
∼n “n 1”
<BEGINANN>

<ANNKIND> “FNN”
<NUMLAYERS> 3

<LAYER> 2
<OPERAND> “SUM”
<ACTIVATION> “SIGMOID”
<INPUTFEA>

<NUMFEAS> 1 351
<FEATURE> 1 39

<SOURCE> <STREAM> 1
<EXPAND> 9

-4 -3 -2 -1 0 1 2 3 4
<WEIGHT> 1000 351

· · ·
· · ·

<BIAS> 1000
· · ·

<LAYER> 3
<OPERAND> “SUM”
<ACTIVATION> “SOFTMAX”
<WEIGHT> 6000 1000

· · ·
· · ·

<BIAS> 6000
· · ·

<ENDANN>

I Example shows a 3-layer feed
forward ANN with

I a sigmoid hidden activation
function

I softmax output activation
function.

I Structure is 351× 1000× 6000.

I Input feature mixture of the
second layer is omitted as it is
just the output of the last layer.

I Also state definition to convert
DNN-HMM posteriors to pseudo
log-likelihoods
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New Modules and Tools

I Extended modules:
HFBLat, HMath, HModel, HParm, HRec, HLVRec

I New modules
I HANNet: ANN structures & core algorithms
I HCUDA: CUDA based math kernel functions
I HNCache: Data cache for data random access

I Extended tools:
HDecode, HDecode.mod, HHEd, HVite

I New tools
I HNForward: ANN evaluation & output generation
I HNTrainSGD: SGD based ANN training
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Other Features
I Math Kernels: CPU, Intel MKL, and CUDA based new kernels for

ANNs
I Input Transforms: compatible with HTK SI/SD input transforms

(e.g. HLDA, CMLLR)
I Speaker Adaptation: an ANN parameter unit online replacement

(e.g. parameterised activation function adaptation)
I Model Edit

I Insert/Remove/Initialise an ANN layer
I Add/Delete a feature element to a feature mixture
I Associate an ANN model to HMMs

I Decoders
I HVite: tandem/hybrid system decoding/alignment/model marking
I HDecode: tandem/hybrid system LVCSR decoding
I HDecode.mod: tandem/hybrid system model marking
I A Joint decoder: log-linear combination of systems (same

decision tree, not in initial release)
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Building Hybrid SI Systems

I Building CE based SI CD-DNN-HMMs:
I Produce desired tied state GMM-HMMs by decision tree tying

(HHEd)
I Generate ANN-HMMs by replacing GMMs with an ANN (HHEd)
I Generate frame-to-state labels with a pre-trained system (HVite)
I Train ANN-HMMs based on CE (HNTrainSGD)

I Building CD-DNN-HMMs with MPE sequence training
I Generate numerator/denominator lattices

(HLRescore & HDecode)
I Phone mark numerator/denominator lattices

(HVite or HDecode.mod)
I Perform MPE training (HNTrainSGD)

I Note similarities to standard HMM build process for MPE training.
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ANN Front-ends for GMM-HMMs
I ANNs can be used as GMM-HMM front-ends by using a feature

mixture to define the composition of the GMM-HMM input vector.
I HTK can accommodate a tandem SAT (CMLLR) system as a

single system
I Mean and variance normalisations are treated as activation

functions.
I SD parameters are replaceable according to speaker ids.

STC

CMLLR

H
LDA

Pitch

PLP

Mean/Variance
Normalisation

Pitch

PLP
Bottleneck DNN

Figure: A composite ANN as a Tandem SAT system front-end.
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BOLT Mandarin Chinese System Results

I 300h Mandarin conversational telephone transcription task,
dev14 test set

I Hybrid DNN structure: 504× 20004 × 1000× 12000
I Tandem DNN structure: 504× 20004 × 1000× 26× 12000

System Criterion %CER
Hybrid SI CE 34.5
Hybrid SI MPE 31.6

Tandem SAT MPE 33.2
Hybrid SI ⊗ Tandem SAT MPE 31.0

I ⊗ is joint decoding of weighted combination hybrid and tandem
models (combined at frame score level).

I hybrid with sequence training reduces error rate by 8% relative
I Joint decoding not available in initial release of HTK V3.5
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HTK-ANN Summary
I HTK-ANN integrates native support of ANNs into HTK.

I HTK based GMM technologies can be directly applied to
ANN-based systems.

I HTK-ANN can train DNNs with very flexible configurations
I Topologies equivalent to DAG
I Different activation functions
I Various input features
I Stochastic gradient descent optimisation
I Frame-level and sequence-level training criteria

I Use in either tandem or hybrid configurations

I Efficient due to availability of CUDA GPU kernels (as well as
CPU kernels)

I Experiments on 300h CTS task showed HTK can generate
standard state-of-the-art tandem and hybrid systems.
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HTK Language Model Interface
I Allows efficient lattice rescoring using various language models:

I n-gram LMs, and recurrent neural network language models
(RNNLMs);

I linear interpolation between the two to draw strengths from both.
I Supports multiple forms of RNNLMs:

I full output, and class based output RNNLMs for improved
efficiency;

I output layer short list and out-of-shortlist (OOS) node covering full
vocab.

I Efficient RNNLM lattice rescoring approaches (ICASSP2014)
provided:

I using n-gram style history clustering;
I or more flexible recurrent hidden vector distance based history

clustering.
I Produces RNNLM rescored HTK format lattices:

I fully integrated with other HTK lattice operations;
I to be used for downstream applications.
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HTK Language Model Interface (cont)

I General and extendable language model interface:
I modularized design allows many more LM types to be supported

in future
I including class based n-gram LMs and feedforward NNLMs.

I Separate RNNLM training software also to be released in future:
I to produce RNNLMs fully compatible in format with HTK V3.5;
I also supports various modelling features to significantly improve

RNNLM efficiency during both training and evaluation time.
I bunch mode GPU training; full/class output RNN LMs;
I NCE training and variance regularised training
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Example of LM Interpolation

HTK Version 3.5

Example of LMs

4-gram LM

\data\

ngram 1=58286

ngram 2=1322619

ngram 3=5768465

ngram 4=11151893

\1-grams:

-2.628496 !!UNK -0.7490927

-1.763285 </s>

-99 <s>-2.071745

-2.334805 A -0.9217603

... ...

RNNLM

!RNN

./RNNLM

./RNNLM.input.wlist.index

./RNNLM.output.wlist.index

31857

20001

Linear interpolation between
4-gram LM and RNNLM

!INTERPOLATE

2

!NGRAM 0.5 ./4g.txt

!NGRAM 0.5 ./rnnlm.txt

HTK V3 Project
Cambridge University
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Key Features of HTK V3.5

I Support ANNs, maintaining compatibility with most existing
functions.

I Flexible input feature configurations
I ANN structures can be any directed acyclic graph
I Stochastic gradient descent supporting frame/sequence training
I CPU/GPU math kernels for ANNs
I Decoders extended to support tandem/hybrid systems, system

combination
I Support for decoding RNN language models

I Lattice rescoring using RNNLMs
I Class / Full word outputs, interpolation with n-grams

I 64-bit compatible throughout
I Bug fixes
I Updated documentation and examples
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Recent Experiments: MGB Challenge Systems
I Challenge for ASRU’15 (http://www.mgb-challenge.org/) to

transcribe etc, general BBC programme output
I Some early development numbers (not our final systems ...)
I 700h training set from distributed data, manual segmentation,

64k vocab

AM LM %WER
GMM-HMM ML HLDA

4-gram

42.7
GMM-HMM MPE 40.7
Tandem SI MPE 27.0
Hybrid CE 28.4
Hybrid MPE 25.9
Hybrid MPE RNNLM 25.0
Hybrid MPE RNNLM + LDA 24.7

I Note included a line on RNNLM adaptation via LDA (see
Interspeech 2015 paper)
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Summary & Plans

I New version of HTK with significantly upgraded capabilities
I HTK V3.5 can produce state-of-the-art performance on large

tasks (BOLT/MGB challenge)
I Expect to release a beta version for Interspeech 2015

Plan to continue to further extend HTK in future
I further NN models such as convolutional neural networks

(CNNs)
I improved/alternative ANN estimation procedures
I other tools such as confusion networks (combination)
I complete recipe for large ASR task
I release tools for RNNLM training (can be used by HTK but not

part of it)
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