Outline

- Background
 - What is HTK
 - Speech Recognition architecture
 - HTK v3.4.1 Main Features
 - Deep Neural Network acoustic models
 - Recurrent Neural Network language models

- HTK v3.5
 - Extensions for Deep Neural Network acoustic models
 - Lattice rescoring with recurrent Neural Network language models
 - Overview of key features

- Some recent ASR Systems built with HTK
 - BOLT Mandarin conversational telephone speech
 - MGB challenge (multi-genre broadcast data)

- Summary and Plans
HTK Contributors

- HTK V3.4.1 book has authors:
 Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain, Dan Kershaw, Xunying (Andrew) Liu, Gareth Moore, Julian Odell, Dave Ollason, Dan Povey, Valtcho Valtchev, Phil Woodland

- Major additions in HTK 3.5 will be primarily due to
 - Chao Zhang (HTK-ANN extension) †
 - Xunying Liu (Language model interface / RNNLM decoding).

- Additional V3.5 input from Anton Ragni, Kate Knill, Mark Gales, Jeff Chen and many others at Cambridge.

† See also: C. Zhang & P.C. Woodland “A General Artificial Neural Network Extension for HTK”, To appear, Interspeech 2015
HTK Overview

- What is HTK?
 - Hidden Markov Model Toolkit
 - set of tools for training and evaluating HMMs: primarily speech recognition but also speech synthesis (HTS)
 - implementation in ANSI C
 - approx 400 page manual tutorial and system build examples
 - modular structure simplifies extensions

- History (1989-)
 - Initially developed at Cambridge University (up to V1.5)
 - ... then Entropic ... (up to V2.2)
 - Since 2000 back at Cambridge (V3 onwards)
 - Free to download from web, more than 100,000 registered users
 - Latest released version is V3.4.1 (in 2009 ...)

- Used extensively for research (& teaching) at CU
 - Built large vocabulary systems for NIST evaluations using HTK

http://htk.eng.cam.ac.uk/
Statistical ASR System

- **Statistical speech models using context-dependent hidden Markov Models**
 - Decision tree state tying
 - Gaussian mixture models (or Neural Networks)

- **probabilities of word sequences (N-gram)**

- **Estimate the models from a large amount of data**

- **Find most probable word sequence using the models**

 \[
 \hat{W} = \arg\max_W P(W|A)
 \]

 \[
 = \arg\max_W \frac{P(A|W)P(W)}{P(A)}
 \]

 \[
 = \arg\max_W \frac{P(A|W)P(W)}{P(A)}
 \]

Both ASR and SMT can be formulated using a **Source-Channel model**.

Transcription

- **Input**: an utterance A
- **Output**: a transcription c

\[
\hat{W} = \arg\max_W P(W|A)
\]

Translation

- **Input**: a foreign sentence F
- **Output**: an English sentence b

\[
\hat{E} = \arg\max_E P(E|F)
\]

Both rely on searching for Maximum A Posteriori probability strings using models estimated from data.
Training/Test Architecture

- HTK includes components for all stages of the speech recognition process

![Diagram of the training/test architecture]

Speech Input → Feature Extraction → Recognition Search → Text Output

- SPEECH CORPUS
- TEXT CORPUS
- FEATURE EXTRACTION
- TRANSCRIPTION
- NORMALIZATION
- LANGUAGE MODELING
- LANGUAGE MODEL
- ADAPTATION
- ACoustIC MODELS
- LEXICON
- TRAINING
- RECOGNITION
HTK Features

- LPC, mel filterbank, MFCC and PLP frontends
 - cepstral mean/variance normalisation + vocal tract length norm.

- supports discrete and (semi-)continuous HMMs
 - diagonal and full covariance models
 - cross-word triphones & decision tree state clustering
 - (embedded) Baum-Welch training

- Viterbi recognition and forced-alignment
 - support for N-grams and finite state grammars
 - Includes N-gram generation tools for large datasets
 - N-best and lattice generation/manipulation

- (C)MLLR speaker/channel adaptation & adaptive training (SAT)

- From V3.4
 - Large vocabulary decoder HDecode: separate license
 - Discriminative training tools, MMI and MPE HMMIRest
HTK Architecture

- HTK is structured as
 - a set of libraries
 - a set of tools
- Tools have uniform interface

- Text-based model formats are used where possible (with binary versions for efficiency)
- Built to scale to large data-sets
 - data-parallel operations for training (HERest/HMMIRest)
 - unsegmented data files (e.g. broadcasts)
 - multiple lattices/labels in one file
Typical HTK MPE HMM Build Process

- Start from maximum likelihood trained triphone HMMs
- Generate “numerator” (correct transcription) and “denominator” (recogniser with weak language model) lattices
- “phone mark” lattices
- Run MPE training with HMMIRest (extended Baum-Welch algorithm)
Deep Neural Network Acoustic Models

- Recently a resurgence in the use of Neural Network models for acoustic modelling
- Deep Neural Networks (DNNs) are Multi-Layer Perceptrons with many hidden layers (Sigmoid or ReLU units)
- **Standard DNNs**
 - Model posterior probability of standard HMM context-dependent phone states (1-of-k encoding, softmax)
 - Frame based criterion optimises the cross-entropy criterion
 - Stochastic gradient descent (SGD) via error back propagation
 - initialised using generative model (RBM pre-training) or EBP (discriminative pre-training)
 - State-of-the-art DNNs also include sequence training via the MPE/MMI criteria computed over lattices
- **HMM-DNN Hybrid models** use the probabilities directly
- **Tandem models** use the DNN to produce features (possibly combined with e.g. PLP) and modelled by a GMM as usual.
Tandem and Hybrid Approaches

- "Tandem (left): Generate features at bottleneck for HMM-GMMs
- "Hybrid (right): replace GMMs with DNN scaled likelihoods
- Both give large reductions in WER (e.g. 25%) & are complementary
- Define state-of-the-art: used in all best research systems and some commercial systems
Recurrent Neural Network Language Models

- Predict probability of next word given current word & history (in recurrent units)
- SGD by back-propagation through time
- Continuous space vs discrete space for N-grams
- Significant reductions in WER
- Expensive to train (& expensive to decode due to multiple histories)
- Apply in combination with N-grams (via lattices preferred but computational issues)
Key HTK Attributes

Strong Points in HTK V3.4.1
- Widely used
- Flexible and modular (easy to modify/extend/use)
- Good documentation & examples
- Could build state of the art systems (in 2009 ...)

Issues
- lack of built-in Deep Neural Network support
 - for frame-based training use other tools
 - can’t extend to “sequence training” (e.g. MMI/MPE)
- n-gram only lattice rescoring (no recurrent neural network LMs)
- only relatively small-scale recipes

HTK V3.5 aims to address issues while retaining strong points!
Overview of HTK-ANN Extensions

- Design Principles
- Implementation Details
 - Generic ANN Support
 - ANN Training
 - Data Cache
 - Other Features
- Example ANN definition
- New Modules and Tools
- Build Procedure
- A Summary of HTK-ANN
Design Principles

- The design should be as generic as possible.
 - Flexible input feature configurations.
 - Flexible ANN model architectures.
 - ... but don’t sacrifice efficiency.

- Maintain compatibility with as many existing functions in HTK as possible.
- HTK-ANN should be compatible with existing functions.
 - To minimise the effort to reuse previous source code and tools.
 - To simplify the transfer of many technologies.

- HTK-ANN should be kept “research friendly”.
Generic ANN Support

- In HTK-ANN, ANNs have layered structures.
 - An HMM set can have any number of ANNs.
 - Each ANN can have any number of layers.
- An ANN layer has
 - Parameters: weights, biases, activation function parameters
 - An input vector: defined by a feature mixture structure
- A feature mixture has any number of feature elements
- A feature element defines a fragment of the input vector by
 - Source: acoustic features, augmented features (e.g. ivectors), output of some layer.
 - A context shift set: integers indicated the time difference.
Generic ANN Support (cont’d)

- In HTK-ANN, ANN structures can be any directed cyclic graph.
- Since only standard EBP is included at present, HTK-ANN can train non-recurrent ANNs properly (directed acyclic graph).

Figure: An example of a feature mixture.

- Feature Element 1: Source: Input acoustic features
 - Context Shift Set: {-6, -3, 0, 3, 6}

- Feature Element 2: Source: ANN 1, Layer 3, Outputs
 - Context Shift Set: {0}

- Feature Element 3: Source: ANN 2, Layer 2, Outputs
 - Context Shift Set: {-1, 0, 1}
ANN Training

- HTK-ANN supports different training criteria
 - Frame-level: Cross Entropy (CE), Minimum Mean Squared Error (MMSE)
 - Sequence-level: Maximum Mutual Information (MMI), Minimum Phone/Word Error (MPE/MWE)
- ANN model training labels can come from
 - Frame-to-label alignment: for CE and MMSE criteria
 - Feature files: for autoencoders
 - Lattice files: for MMI, MPE, and MWE criteria
- Gradients for SGD can be modified with momentum, gradient clipping, weight decay, and max norm.
- Supported learning rate schedulers include List, Exponential Decay, AdaGrad, and a modified NewBob.
Data Cache

- HTK-ANN has three types of data shuffling
 - Frame based shuffling: CE/MMSE for DNN, (unfolded) RNN
 - Utterance based shuffling: MMI, MPE, and MWE training
 - Batch of utterance level shuffling: RNN, ASGD

Figure: Examples of different types of data shuffling.
ANN Model Definition

Example shows a 3-layer feed forward ANN with
 - a sigmoid hidden activation function
 - softmax output activation function.

Structure is $351 \times 1000 \times 6000$.

Input feature mixture of the second layer is omitted as it is just the output of the last layer.

Also state definition to convert DNN-HMM posteriors to pseudo log-likelihoods
New Modules and Tools

- Extended modules:
 HFBLat, HMath, HModel, HParm, HRec, HLVRec

- New modules
 - HANNNet: ANN structures & core algorithms
 - HCUDA: CUDA based math kernel functions
 - HNCache: Data cache for data random access

- Extended tools:
 HDecode, HDecode.mod, HHEd, HVite

- New tools
 - HNForward: ANN evaluation & output generation
 - HNTrainSGD: SGD based ANN training
Other Features

- Math Kernels: CPU, Intel MKL, and CUDA based new kernels for ANNs
- Input Transforms: compatible with HTK SI/SD input transforms (e.g. HLDA, CMLLR)
- Speaker Adaptation: an ANN parameter unit online replacement (e.g. parameterised activation function adaptation)
- Model Edit
 - Insert/Remove/Initialise an ANN layer
 - Add/Delete a feature element to a feature mixture
 - Associate an ANN model to HMMs
- Decoders
 - HVite: tandem/hybrid system decoding/alignment/model marking
 - HDecode: tandem/hybrid system LVCSR decoding
 - HDecode.mod: tandem/hybrid system model marking
 - A Joint decoder: log-linear combination of systems (same decision tree, not in initial release)
Building Hybrid SI Systems

- Building CE based SI CD-DNN-HMMs:
 - Produce desired tied state GMM-HMMs by decision tree tying (HHEd)
 - Generate ANN-HMMs by replacing GMMs with an ANN (HHEd)
 - Generate frame-to-state labels with a pre-trained system (HVite)
 - Train ANN-HMMs based on CE (HNTrainSGD)

- Building CD-DNN-HMMs with MPE sequence training
 - Generate numerator/denominator lattices (HLRescore & HDecode)
 - Phone mark numerator/denominator lattices (HVite or HDecode.mod)
 - Perform MPE training (HNTrainSGD)

- Note similarities to standard HMM build process for MPE training.
ANN Front-ends for GMM-HMMs

- ANNs can be used as GMM-HMM front-ends by using a feature mixture to define the composition of the GMM-HMM input vector.
- HTK can accommodate a tandem SAT (CMLLR) system as a single system
 - Mean and variance normalisations are treated as activation functions.
 - SD parameters are replaceable according to speaker ids.

Figure: A composite ANN as a Tandem SAT system front-end.
BOLT Mandarin Chinese System Results

- 300h Mandarin conversational telephone transcription task, dev14 test set
- Hybrid DNN structure: $504 \times 2000^4 \times 1000 \times 12000$
- Tandem DNN structure: $504 \times 2000^4 \times 1000 \times 26 \times 12000$

<table>
<thead>
<tr>
<th>System</th>
<th>Criterion</th>
<th>%CER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid SI</td>
<td>CE</td>
<td>34.5</td>
</tr>
<tr>
<td>Hybrid SI</td>
<td>MPE</td>
<td>31.6</td>
</tr>
<tr>
<td>Tandem SAT</td>
<td>MPE</td>
<td>33.2</td>
</tr>
<tr>
<td>Hybrid SI \otimes Tandem SAT</td>
<td>MPE</td>
<td>31.0</td>
</tr>
</tbody>
</table>

- \otimes is joint decoding of weighted combination hybrid and tandem models (combined at frame score level).
- hybrid with sequence training reduces error rate by 8% relative
- Joint decoding not available in initial release of HTK V3.5
HTK-ANN Summary

- HTK-ANN integrates native support of ANNs into HTK.
- HTK based GMM technologies can be directly applied to ANN-based systems.
- HTK-ANN can train DNNs with very flexible configurations
 - Topologies equivalent to DAG
 - Different activation functions
 - Various input features
 - Stochastic gradient descent optimisation
 - Frame-level and sequence-level training criteria
- Use in either tandem or hybrid configurations
- Efficient due to availability of CUDA GPU kernels (as well as CPU kernels)
- Experiments on 300h CTS task showed HTK can generate standard state-of-the-art tandem and hybrid systems.
HTK Language Model Interface

- Allows **efficient lattice rescoring** using various language models:
 - *n*-gram LMs, and recurrent neural network language models (RNNLMs);
 - linear interpolation between the two to draw strengths from both.
- Supports **multiple forms of RNNLMs**:
 - full output, and class based output RNNLMs for improved efficiency;
 - output layer short list and out-of-shortlist (OOS) node covering full vocab.
- **Efficient RNNLM lattice rescoring approaches** (ICASSP2014) provided:
 - using *n*-gram style history clustering;
 - or more flexible recurrent hidden vector distance based history clustering.
- Produces **RNNLM rescored HTK format lattices**:
 - fully integrated with other HTK lattice operations;
 - to be used for downstream applications.
HTK Language Model Interface (cont)

- General and extendable language model interface:
 - modularized design allows many more LM types to be supported in future
 - including class based n-gram LMs and feedforward NNLMs.

- Separate RNNLM training software also to be released in future:
 - to produce RNNLMs fully compatible in format with HTK V3.5;
 - also supports various modelling features to significantly improve RNNLM efficiency during both training and evaluation time.
 - bunch mode GPU training; full/class output RNN LMs;
 - NCE training and variance regularised training
Example of LM Interpolation

4-gram LM

```
data\ngram 1=58286
ngram 2=1322619
ngram 3=5768465
ngram 4=11151893
```

```
1-grams:
-2.628496 !!UNK -0.7490927
-1.763285 </s>
-99 <s>-2.071745
-2.334805 A -0.9217603
... ...
```

RNNLM

```
!RNN
./RNNLM
./RNNLM.input.wlist.index
./RNNLM.output.wlist.index
31857
20001
```

Linear interpolation between 4-gram LM and RNNLM

```
!INTERPOLATE
2
!NGRAM 0.5 ./4g.txt
!NGRAM 0.5 ./rnnlm.txt
```
Key Features of HTK V3.5

- Support ANNs, maintaining compatibility with most existing functions.
 - Flexible input feature configurations
 - ANN structures can be any directed acyclic graph
 - Stochastic gradient descent supporting frame/sequence training
 - CPU/GPU math kernels for ANNs
 - Decoders extended to support tandem/hybrid systems, system combination
- Support for decoding RNN language models
 - Lattice rescoring using RNNLMs
 - Class / Full word outputs, interpolation with n-grams
- 64-bit compatible throughout
- Bug fixes
- Updated documentation and examples
Recent Experiments: MGB Challenge Systems

- Some early development numbers (not our final systems ...)
- 700h training set from distributed data, manual segmentation, 64k vocab

<table>
<thead>
<tr>
<th>AM</th>
<th>LM</th>
<th>%WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMM-HMM ML HLDA</td>
<td>42.7</td>
<td></td>
</tr>
<tr>
<td>GMM-HMM MPE</td>
<td>40.7</td>
<td></td>
</tr>
<tr>
<td>Tandem SI MPE</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td>Hybrid CE</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td>Hybrid MPE</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td>Hybrid MPE</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>Hybrid MPE</td>
<td>24.7</td>
<td></td>
</tr>
</tbody>
</table>

- Note included a line on RNNLM adaptation via LDA (see Interspeech 2015 paper)
Summary & Plans

- New version of HTK with significantly upgraded capabilities
- HTK V3.5 can produce state-of-the-art performance on large tasks (BOLT/MGB challenge)
- Expect to release a beta version for Interspeech 2015

Plan to continue to further extend HTK in future

- Further NN models such as convolutional neural networks (CNNs)
- Improved/alternative ANN estimation procedures
- Other tools such as confusion networks (combination)
- Complete recipe for large ASR task
- Release tools for RNNLM training (can be used by HTK but not part of it)